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Abstract 
Elution band profiles are calculated for radially heterogeneous cylindrical columns, assuming an infinite rate of 

mass transfer kinetics and no axial dispersion. Steady-state flow-rate is assumed, with a given, cylindrical radial 
distribution of the velocity. Parabolic, cuspal and cosinusoidal distributions were studied, all three with either the 
velocity maximum or minimum in the column center. In all cases, strong changes in the band profiles appear for 
velocity distributions in which the ratio of the maximum to the minimum velocity is as low as 1.05. Some of the 
profiles obtained appear to be similar to experimental profiles. 

1. Introduction 

The theory of chromatography has always 
assumed so far that the column is radially 
homogeneous, that the feed is evenly spread 
over the entire column cross-section and that 
plug flow is achieved throughout the column 
[l-5]. Accordingly, the mass balance equation is 
written and solved in a single space dimension, 
and the mathematical problem studied has only 
two dimensions, the column length and the time. 
However, even analytical chromatographic col- 
umns are not homogeneous. There are a few 
scattered reports in the literature showing signifi- 
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cant variations of the mobile phase velocity 
across the column cross-section, probably caused 
by a lack of homogeneity of the packing density 
[6-81. Preliminary results [9] obtained in our 
laboratory lead to the same conclusion. 

Analytical columns are typically 0.46 cm I.D. 
and lo-30 cm long, so they are 20 to 60 times 
longer than they are wide. Even in this case, 
Knox and Parcher [lo] have shown that trans- 
column equilibration is a comparatively slow 
process, much slower than axial migration. So, in 
practice, most sample molecules injected in the 
center of the column never come close to the 
column wall. In such a case, radial diffusion 
cannot even out the effects of fluctuations of the 
column characteristics related to an inhomoge- 
neous packing density, if these fluctuations take 
place over a distance significant compared to the 
column radius. Column heterogeneity causes 
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local fluctuations of the external porosity, the 
permeability, and the retention factors. It proba- 
bly explains a large part of the plate height 
contribution attributed to eddy diffusion [ 111. 

If even an analytical column cannot be consid- 

ered as homogeneous, a preparative column, 
typically several inches to a few feet in diameter, 
and rarely more than 2 or 3 ft. (1 in. = 2.54 cm, 1 
ft. = 30.48 cm) long, certainly cannot. Account- 
ing for the local fluctuations in the packing 
density becomes necessary. This problem has 
been identified by Giddings [12] long ago. Its 
solution does not raise major difficulties of 
principle, but requires the answers to a number 
of practical problems. The straightforward solu- 
tion would be to write and solve the mass 
balance equation of chromatography in a three- 
dimension space, but this would require an 
enormous amount of computing power, even 
though the number of meshes needed in the grid 
would be much smaller in the two radial direc- 
tions than along the column axis. Furthermore, 
the solution of this problem requires the defini- 
tion of proper boundary conditions. i.e., of the 
distribution of the packing heterogeneity, a pa- 
rameter which is usually not available. Finally, 
experiments show that the efficiency of wide- 
bore preparative columns is not much below that 
of analytical columns packed with the same 
stationary phase. The influence of the column 
heterogeneity on the profile of large-size samples 
cannot be important when the profiles obtained 
with preparative columns remain close to those 
observed for analytical columns operated at the 
same loading factor. Thus, a simple correction 
would be useful in most cases. The general 
problem does not have to be solved at this stage. 

Preparative columns are cylindrical. The lack 
of stability of the packing observed in numerous 
cases, the formation of important voids at the 
top of the bed after operating times ranging from 
a few days to a few weeks have been attributed 
by their operators to the lack of bed support by 
the column wall [13,14]. This suggests that if the 
bed is heterogeneous, the first approximation for 
a distribution of the packing density should be 
cylindrical. Indeed, a cylindrical distribution of 
the mobile phase velocity in analytical [6-g] or 

narrow-bore columns [9] is in agreement with 
experimental results. The long-term stability of 
the packing bed requires a form of dynamic 
compression. A number of axial and radial 
compression columns are currently in use. 
Because of its geometry, the radial compression 
columns must bc cylindrical with a good degree 
of approximation. Accordingly, the study of the 
behavior of band profiles under linear and non- 
linear conditions in cylindrical, heterogeneous 
columns would be a satisfactory approximation, 
and the solution of the chromatographic problem 
in this case would give an excellent idea of the 
degree to which column heterogeneity can affect 
the performance of preparative columns. The 
advantage of this approach is to reduce the 
problem to a two-space dimension one, decreas- 

ing considerably in the process the amount of 
computing power required for the calculation of 
numerical solutions. 

If we assume a cylindrical symmetry for the 
column, the packing is not homogeneous in the 
radial direction, but the distribution profile is the 
same in all plants passing through the column 
axis. As a consequence, the packing density, the 
column external porosity. and its permeability 
are constant along any parallel to the column 
axis. Hence, the mobile phase velocity will be 
everywhere parallel to the column axis and 
constant along a parallel to this axis. Because 
chromatographic columns are always used after 
proper equilibration between the stationary and 
the mobile phases. we do not need to solve a 

time-dependent hydraulic equation. It is legiti- 
mate to assume a stable cylindrical distribution 
of the mobile phase velocity, related to the 
permeability distribution. and to consider the 
distribution of the mobile phase velocity as a 
part of the boundary conditions. 

The simplest model of non-linear chromatog- 
raphy is the ideal model. In this model, constant 
equilibrium of the studied component between 
the stationary and the mobile phase is assumed. 
Furthermore, the axial dispersion, due to molec- 
ular diffusion and to eddy dispersion is neg- 
lected. A linear column operated with these 
assumptions would have an infinite efficiency. A 
third assumption of the ideal model is plug flow 
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distribution. In this work, we investigate what 
happens if this third assumption is relaxed. We 
study the band profiles observed in a column 
where axial and radial dispersion are neglected, 
and where local phase equilibrium is reached 
constantly, but where there is a cylindrical dis- 
tribution of the mobile phase velocity. 

2. Theory 

In this work, we assumed that the column has 
an infinite efficiency and that the equilibrium 
isotherm is given by the Langmuir equation. We 
divide the column in an infinite number of 
concentric annular columns of thickness d, and 
radius r between 0 and R,, the column radius. 
The velocity is constant in each of these annular 
columns, so its contribution to the elution profile 
is derived by applying the solution of the ideal 
model. The elution profiles of the sample on 
each column are identical, but their break- 
through times are shifted since the velocity varies 
from annular column to annular column. Sum- 
mation of these individual contributions over the 
column radius will give the elution profile as 
recorded by a conventional detector. It will be 
possible also to represent the elution of isoconcen- 
tration surfaces in order to illustrate the propa- 
gation of the zones. We discuss successively the 
elution profile of the ideal model in the case of 
the Langmuir isotherm, the velocity profiles 
selected and the derivation of the profiles. 

2.1. The ideal model of chromatography 

The ideal model assumes a linear column with 
an infinite efficiency. In this case the mass 
balance of a compound is written 

a4 z+F.-g +z&$=o 
where C and q are the local concentrations in the 
mobile and stationary phases, respectively, F is 
the phase ratio [F = (1 - E)/E, with E total col- 
umn porosity], and u(r) is the mobile phase 
velocity. Since we assume constant equilibrium 
between the two phases, q and C are related by 

the equilibrium isotherm, and given by the 
Langmuir equation 

aC 
q=f(C)= l+bC (2) 

where a and b are numerical coefficients charac- 
terizing the compound studied and the stationary 
phase. The local concentrations C and q are 
functions of the two spatial coordinates, z and r 
and of time, t: C = C(z,r,t). The initial condition 
is 

C(z, r, t = 0) = 0 (3) 

indicating that at time t = 0, the column is 
equilibrated with the pure mobile phase. The 
boundary condition is the injection of a rectan- 
gular concentration pulse of width t, and height 

C, 

C(z = O,r,t) = C, for 0 < t s t 
P 

C(z = O,r,t) = 0 for t, < t 

(4a) 

(4b) 

Wilson [15] and DeVault [l] have shown that, 
for a convex upwards isotherm such as the 
Langmuir model, the elution profile has two 
different sides, a front shock and a rear diffuse 
boundary [16]. This phenomenon arises from the 
fact that, in the ideal model, a velocity can be 
associated to each concentration. Thus, if we 
consider a linear (i.e., homogeneous) column, 
any concentration propagates along a straight 
line in the z,t space (z = column length, t = 
time). The rear, diffuse profile is given by the 
equation 

t(r,C) = t, + t,,(r) ( dq 
1 + F. hc > 

> 

(W 

where t,(r) is the hold-up time, now function of 
the radial position [t,(r) = L/u(r), where L is the 
column length], and t(r, C) is the retention time 
of the concentration C along the cylinder of 
radius r coaxial with the column. Eq. 5a applies 
to any isotherm, and Eq. 5b to the Langmuir 
model. The profiles end with the elution of the 
concentration 0, at time 
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t,(r, c = 0) = t, + t,(l + UF) = t, + t,,,(r) (5c) 

with aF = kh, the classical retention factor under 
linear conditions. The retention time of the 
concentration shock is also the retention time of 
the band maximum. In the case of a Langmuir 
isotherm, it is given by [5,16] 

G&) = r, + r,(r) + [G&) - r,(r)](l - flf)2 (6) 

where L, is the loading factor or ratio of the 
sample size to the sample amount needed to 
saturate the column. This column saturation 
capacity is proportional to the amount of station- 
ary phase in the column and to the ratio a/b of 
the two coefficients of the Langmuir isotherm. 
The maximum concentration of the local elution 
profile is 

VG 
‘,= b(l -flf) 

(7) 

It is independent of the radial position, but this 
maximum concentration is eluted at time 
t,(C,, r), which depends on r. 

2.2. Velocity distribution 

The exact distribution of the mobile phase 
velocity across the column is extremely compli- 
cated. It reflects the complexity of the packing 
structure. The velocity is 0 inside each particle 
and along its surface. Between particles, it raises 
very rapidly from the particle surface to the core 
of the channels, with rapid fluctuations in direc- 
tion and intensity, as it is probable that more or 
less stable eddies take place inside some of the 
minute holes between particles. Any tractable 
model must simplify drastically the actual flow- 
rate distribution by considering averages. 

The simplest model is the one currently used, 
the velocity is averaged over the entire column 
cross-section area by dividing the flow-rate by 
either vrRf or by the actual cross-section area 
available to the stream, meRf, with E, the 
external porosity (approaches favored in hy- 
draulics), or by the cross-section area of the 
column available to the mobile phase, mRz 
(approach favored by chromatographers when 

they consider the mobile phase flow velocity, 
u = Lit,). It is legitimate to average out the local 
fluctuations of the mobile phase velocity over 
short distances because dispersion may smooth 
out the concentration gradients caused by these 
velocity fluctuations (e.g., fluctuations on the 
scale of the particle diameter). However, this 
approach precludes from taking into account the 
large-scale fluctuations of the velocity which 
cause warping, undulations or other large-scale 
distortions of the radial shape of the band 
profiles which may not be smoothed out by 
dispersion without major loss in column ef- 
ficiency, or which just subsist until elution of the 
zone. 

In order to account for the effect of large-scale 
fluctuations in the bed density, we need a more 
sophisticated model. We assume that the velocity 
can be averaged out locally, over a scale large 
compared to the particle size, but small com- 
pared to the column radius. Since for the sake of 
simplicity, we assume the column to have a 
cylindrical symmetry, we shall consider three 
cylindrical distributions for the mobile phase 
velocity, a parabola, two parabolas with a cusp 
at the column center, and a cosine symmetrical 
around the column center (Fig. 1). These pro- 
files are referred to later as FLOW-l (Fig. la and 
b), FLOW-2 (Fig. lc and d) and FLOW-3 (Fig. 
le and f), respectively. Each velocity profile is 
characterized by the ratio of the maximum to the 
minimum velocities. For each distribution, we 
considered the two possible cases, with either a 
maximum (Mu) or a minimum (urn) of the mobile 
phase velocity in the column center. For each 
distribution, the calculations were carried out 
with three different ratios of the maximum to 
the minimum flow velocity. To permit an easy 
comparison of the results, the flow velocity 
distributions were normalized. to achieve in all 
cases the same value for the mobile phase flow- 
rate 

I 

R, 
F, = 2~ru(r) dr (8) 0 

Thus, the cross-section average velocities, hence 
the column hold-up times, are the zrme for all 
distributions, provided the average velocity be 
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Fig. 1. Velocity distributions used for the band profile 
calculations (not to scale). (a) FLOW-l, parabolic distribu- 
tion, uc > uw. (b) FLOW-l, parabolic distribution, ~c < u,,,. 
(c) FLOW-2, cuspal distribution, uc <u,. (d) FLOW-2, 
cuspal distribution, uc > u,. (e) FLOW-3, cosinusoidal dis- 
tribution, uc > uw. (f) FLOW-3, cosinusoidal distribution, 
uccu,. uc = Flow velocity at the column center; uw = flow 
velocity along the wall. 

defined from the first moment of an unretained 
band profile. 

The velocity distributions are assumed to be 
fully developed and stable in each case, the 
velocity being constant along any parallel to the 
column axis. The possible contribution of tran- 
sient effects at both ends of the column, where 
the velocity profile may be different from what it 
is in the column, under steady-state conditions, 
are neglected. Also neglected is the radial dis- 
tribution of the injection profile. A piston in- 
jection profile is assumed. The effect of a radial 
distribution of the injection is discussed in the 
next section. Finally, the effect of the difference 
in viscosity between the pure mobile phase and 
the sample solution inside the moving band is 
also neglected. Calculations carried out in the 
case of an homogeneous column [17] have shown 
that this effect is small unless the sample con- 
centration is very high and the viscosity of the 

sample is much higher than that of the mobile 
phase. 

The parabolic distribution was chosen for its 
simplicity. It affords the simplest possible de- 
parture from column homogeneity. It is impor- 
tant to understand that the parabolic profile 
considered here has nothing to do with the 
Hagen-Poiseuille velocity profile observed in an 
empty tube. Although the velocity is certainly 0 
at the column wall, there are no reasons for it to 
be smaller at a few particle diameters from the 
wall than at the column center, unless there is a 
significant gradient of packing density. In fact, as 
we show later, the ratio of the maximum to the 
minimum “local averaged” velocities as defined 
above which is observed in an actual preparative 
column is probably lower than 1.1. The other 
two distributions were selected because ex- 
perimental results [6-91 suggest that the mobile 
phase velocity is indeed not constant across the 
column, and tends to be distributed approxi- 
mately with a cylindrical symmetry, but also that 
the maximum velocity is located neither at the 
column center nor along the wall, but on a near 
circle having a diameter slightly larger than the 
column radius. 

2.3. Injection profile and velocity profile 

In this paper, we study the influence on the 
elution profile in the ideal model of a radial 
distribution of the velocity in the column com- 
bined with a flat injection profile. This combina- 
tion is equivalent to that of a constant velocity 
across the entire column (flat velocity profile) 
with a radial distribution of the concentration at 
the injection, so the band profiles obtained will 
be similar. It is easy to prove this by comparing 
two experiments, one done with a column having 
a velocity profile, U,,(T), and a flat injection 
profile (Fig. 2, dotted line), the other a flat 
velocity profile and an injection profile such that 
the injection pulse front shock enters into the 
column at time t(r) and its rear shock enters the 
column at t, + t(r) (Fig. 2, solid line). The 
elution time of the front shock on the first 
column will be given by Eq. 6, and the retention 
time of the concentration C on the rear diffuse 
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Fig. 2. Comparison between the radial distributions of the 

concentration obtained with a flat injection in a non-homoge- 

neous column (solid lines) and a nonplanar injection in an 

homogeneous column with a flat velocity profile (dotted 

lines). Each profile gives the time of arrival of the front 

concentration shock as a function of the radial position. The 

different profiles correspond to different locations along the 

column (5, 10, 15 and 20 cm). The profile is unchanged for a 

non-planar injection in an homogeneous column, since there 

is no radial dispersion in the ideal model. The profile 

becomes increasing curved for a planar injection in a non- 

homogeneous column. because the effect of the velocity 

profile is cumulative. 

boundary by Eq. 5b. For the second column, a 
similar equation can be written, giving the radial 

distribution of the retention time of the con- 
centration C 

(9) 

where t,, = L/u,, is now constant, because the 
velocity profile is flat (in Fig. 2) and t(r) is the 
radial profile of the injection. The two radial and 
axial distributions of all the concentrations C’ in 
the elution bands on the two columns will be 
identical provided 

(9b) 

Eq. 9b is the relation of equivalence between the 
injection profile in a column with a flat velocity 
profile and a column with a flat injection and a 

velocity profile, for them to give the same 
elution profile. 

Accordingly, solving one problem is equiva- 
lent to solving the other one, in the framework 
of the ideal model, because there is no radial 
dispersion. The equivalence would be approxi- 
mate in columns having a high efficiency, 
because the same combination of radial and axial 
dispersion coefficients would lead to different 
results in the two columns. Using Eq. 9b would 
also permit the derivation of an injection profile 
which would permit the calculation of a band 
profile affected by both a velocity distribution 

and an injection distribution. It could also permit 
the calculation of an injection distribution which 
would cancel the effects of a known velocity 
distribution, if it were practical to implement an 
injection with a complex injection profile. 

2.4. Calculation of the elution prqfiles 

The column is divided into IE concentric annu- 
lar columns of thickness Ar = KC/n and of radius 
r between 0 and R,. In each annular column, the 
velocity is constant. The concentration profile at 
the end of each annular column is derived by 
applying the solution of the ideal model. The 
elution profile for the whole column is calculated 
by summing up the differential amounts eluted 
from all the annular columns at any given time 

and reporting this amount to the total volume of 
mobile phase in the corresponding differential 
slice of the column 

= c:‘,, r, Ar u(T,r, ,t) 

c:_, r,Aru(r,) 

where c(t) is the cross-section average concen- 
tration, r, is the radius of the ith annular column, 
u(r,) is the velocity distribution and C(r;,t) is the 

solution of the ideal model for the ith annular 
column. The calculations were done with a value 
of n equal to 50. The chromatograms obtained 
are reported in the dimensionless coordinates of 
the Langmuir model, as hC versus (t - f,,)i 
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OR 0 - ?,), where f. and f,,, are the average 
hold-up time and the average limit retention 
time at infinite dilution. Both average retention 
times are calculated from the cross-section aver- 
age mobile phase velocity. Thus, the chromato- 
grams depend only on the velocity distribution 
and the loading factor. 

The concentration profile given by Eq. 9 
would be recorded by a detector which would 
mix and homogenize the entire column stream. 
In practice, no detector could possibly operate 
this way without introducing a significant amount 
of axial dispersion. More probably, the detector 
would see only part of the column effluent and 
give a different chromatogram depending on the 
exact location of the streamlet on which it 
operates, and one different from the actual 
average concentration profile. The corre- 
sponding sources of errors are not discussed in 
this paper. 

3. Results and discussion 

The calculations were carried out for two 
values of the loading factor, 1 and 10%. The 
band profiles obtained for each velocity distribu- 
tion, with these two values, are presented on the 
same figure. The results are shown in Figs. 3-8, 
corresponding to the parabolic (Figs. 3 and 4), 
the cuspal (Figs. 5 and 6) and the cosine (Figs. 7 
and 8) velocity distributions, respectively. 

A quick glance at these figures shows that the 
band profile is very sensitive to the nature of the 
velocity distribution and, in each case, to the 
amplitude of the velocity fluctuation across the 
column. All the figures have a few common 
features, however. First, they share the angular 
sharpness resulting from the lack of apparent 
dispersion which is observed for all the profiles 
derived from the ideal model. Secondly, except 
in extreme cases, the profile remains highly 
unsymmetrical, with a steep front and a diffuse 
rear boundary. Thirdly, the influence of the 
velocity distribution on the band profiles is more 
important for the lower value of the loading 
factor than for the higher one. Fourthly, an 
important fraction of this rear boundary remains 

Fig. 3. Band profiles obtained with the velocity distribution 

in Fig. la. Solid line, u,Iu, = 1; dashed-dotted line, uc/ 

uw = 1.05; dashed line, u,Iu, = 1.10; dotted line, u,Iu, = 

1.15. Right profiles, L, = 1.0%; left profiles, L, = 10%. 

unchanged, whatever the velocity distribution 
and its amplitude. Finally, the bands end at a 
finite retention time, another characteristic of 
the ideal model and of its lack of dispersion. 

Comparison of Figs. 3 and 4 (parabolic ve- 
locity distribution) shows a great similarity, in- 
dicating that, in this case, the nature of the 
distribution is more important than whether the 

1 
(t - t,Mr,,, - to) 

\ Fig. 4. Fig. 4. Band profiles obtained with the velocity 

1 distribution in Fig. lb. Solid line, u,Iu, = 1; dashed-dotted 

line, u,Iuc = 1.05; dashed line, u,Iu, = 1.10; dotted line, 

u,/u, = 1.15. Right profiles, L, = 1.0%; left profiles, L, = 

10%. 
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Fig. 5. Band profiles obtained with the velocity distribution 

in Fig. lc. Solid line, u,Iu, = 1; dashed-dotted line, CA,/ 

uc = 1.05; dashed line, u,/u, = 1.10; dotted line, u,/u, = 

1.15. Right profiles, L, = 1.0%; left profiles, L, = 10%. 

maximum velocity is in the center or close to the 
wall. For low or moderate velocity ratios, the 
front is slightly slanted but still nearly a straight 
line. The time between the beginning of the 
elution of the band and the elution of its maxi- 
mum is nearly independent of the loading factor. 
Accordingly, the profiles of the small size sample 

Chromatogr. A 672 (1994) l-10 

(t t,Mt,,, - to1 

Fig. 7. Band profiles obtained with the velocity distribution 

in Fig. le. Solid line, u,Iu, = 1; dashed-dotted line, u,/ 

u, = 1.05; dashed line, u,/u, = 1.10; dotted line, u,/u, = 

1.15. Right profiles, L, = 1.0%; left profiles, L, = 10%. 

bands are more strongly distorted than the 
heavily overloaded ones. At large velocity ratios, 
the front still begins as a straight line. then it 
curves at approximately half the height of the 
ideal band profile. The band tails slightly, as if 
the column efficiency had become finite, but still 

0.5 

(t - tO)litl(,O - to) 

Fig. 6. Band profiles obtained with the velocity distribution 

in Fig. Id. Solid line, Q/U, = 1; dashed-dotted line, u,/ 

uM = 1.05; dashed line, u,Iu, = 1.10; dotted line, u,/u, = 

1.15. Right profiles, L, = 1.0%: left profiles, L, = 10%. 

Fig. 8. Band profiles obtained with the velocity distribution 

in Fig. If. Solid line. u,/u, = 1: dashed-dotted line, u,i 

u, = 1.05; dashed line, u,/u, = 1.10; dotted line, u,iu, = 

1.15. Right profiles, L, = 1.0%; left profiles. L, = lo%>. 
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elution is entirely finished after a finite time. As 
expected [5], the rear of the band is the same for 
the two sample sizes. 

Comparison of Figs. 5 and 6 shows a behavior 
significantly different from the one observed in 
the previous case. The band profile is strongly 
different depending whether the velocity is maxi- 
mum at the column center (Fig. 5) or at half the 
column radius (Fig. 6). This is due to the fact 
that, by contrast with the previous case, the 
contributions of the different concentric regions 
of the column cross-section to the profile have 
significantly different weights. In the former 
case, the front begins as a shock, to turn back- 
wards, with a slope which decreases rapidly with 
increasing velocity ratio. At the lower value of 
the loading factor, the band is nearly flat towards 
its maximum. The band tail is the same as for the 
parabolic distribution. In the latter case (Fig. 6), 
the band begins smoothly, and quite earlier than 
in the former case (Fig. 5). Beyond its half- 
height, the profile becomes nearly vertical. This 
difference is explained by the fact that the 
regions around the column center and the wall 
where the velocity is extreme has a much lower 
surface area than the annular region where the 
velocity is near its other extreme. Accordingly, 
the band maximum is quite sharp. 

Finally, the comparison of Figs. 7 and 8 shows 
a situation much closer to the second case than 
to the first one. The main difference between 
Figs. 5 and 7, or Figs. 6 and 8, respectively, is in 
the more progressive rise of the beginning of the 
band front. 

It is also important to observe that in all cases 
the band width at half-height is barely affected 
by the importance of the spread of the velocity 
distribution for a 10% loading factor. It is 
noticeably increased for the 1% loading factor, 
but even then the relative change is moderate. 
The baseline band width is more significantly 
increased. Thus, the band distortion, and espe- 
cially the amount of tailing caused by a non- 
homogeneous packing, may have more serious 
effects than revealed by mere studies of band 
widths and apparent column efficiencies. For 
actual columns, the effect might not be easy to 
recognize unless the velocity spread is large. 

Radial dispersion can relax the concentration 
gradients arising from large-scale velocity differ- 
ences over short distances. After a time t, a 
Dirac pulse in an homogeneous cylindrical tube 
becomes a Gaussian of variance o2 = 2Dt. Thus, 
the Fick number, Fi = z2/2Dt, is used to char- 
acterize the extend of relaxation of a concen- 
tration gradient by dispersion. A Fick number of 
1 corresponds to a distance equal to mf. 

In an actual chromatographic column, the 
radial dispersion coefficient includes contribu- 
tions of the molecular and eddy diffusions similar 
to those involved in the axial dispersion coeffi- 
cient, but does not include any contributions of 
the resistance to mass transfer inside the par- 
ticles nor of the kinetics of adsorption/desorp- 
tion [7,10]. Accordingly, D, can be estimated to 
be between one half and one fifth of D, = HLI 
2t, = Hzd2, depending on the mobile phase 
velocity (where D, and D, are the axial and 
radial dispersion coefficients, respectively). The 
distance over which a concentration gradient can 
be relaxed during the band migration is of the 
order of m to m. With values of the 
column HETP in the 20 to 50 pm range and 
typical column lengths being around 20 cm, we 
obtain 0.14 cm, which is indeed small compared 
to the diameter of most preparative columns. It 
is barely a quarter of the diameter of convention- 
al analytical columns. Indeed, Knox and Parcher 
[lo] have shown that if a point-like injection is 
performed at the column center, the elution zone 
never sees the wall of a conventional column. 

The worse chromatogram we have obtained so 
far, with a radial compression column severely 
mistreated by raising the inlet pressure above the 
compression pressure to induce the formation of 
cracks in the packing [18], is shown in Fig. 9. As 
this figure illustrates, actual overloaded elution 
profiles may look somewhat as predicted using a 
cylindrical velocity distribution (compare the 
profile in Fig. 9 and the high concentration 
profiles corresponding to a velocity ratio of 1.05 
in Figs. 5 and 8). Nevertheless, in view of the 
profiles generated in this study, the degree of 
homogeneity which can be achieved when pack- 
ing large-diameter preparative columns appears 
to be more than satisfactory. It seems to corre- 
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Fig. 9. Experimental band profile obtained with a worn out 

17.5 x 7.5 cm radial compression column packed with 

IMPAQ RG1020C,,. Mobile phase methanol-water (40:60), 

74 mUmin. Sample, 3.88 g phenol. 

spond to velocity distributions where the range 
of velocity across the column does not exceed 5 
to 10% of the average velocity. 

4. Conclusions 

The ideal model shows that major distortions 
of the band profiles arise whenever the mobile 
phase velocity changes significantly across the 
section of the column. It is rare that experimen- 
tal profiles exhibit the large deformations which 
are associated with variations of the local ve- 
locity over the column width of the order of 10 
to 15%. Thus, a comparison between the results 
of experiments and those of the calculations 
discussed in this work tends to show that actual 
columns are relatively homogeneous. However, 
the ideal model is not realistic, as we know from 
studies of classical, homogeneous columns. A 
radial velocity distribution creates a radial con- 
centration gradient which will be relaxed to some 
extent by radial dispersion. The actual deforma- 
tion of the band profiles caused by a non- 
homogeneous packing distribution will be less 
than predicted by the ideal model. Further work 
using a model taking both axial and radial 
dispersion into account is in progress and will be 
reported later. 
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